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ABSTRACT 

A Cartesian grid generation methodology is developed for unsteady control volume computational fluid dynamic (CFD) solvers. 
Arbitrary combinations and numbers of moving and stationary boundaries are allowed to exist in the two-dimensional Cartesian 
grid template. Specific definitions for the possible cases, CFD solver requirements and moving geometry handling algorithms of 
Cartesian grids are described. Applications are selected from bio-fluid dynamics and aerospace propulsion to demonstrate the 
capability of the method. 
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When Cartesian grids are used, even in a simple two-
dimensional problem, triangular, quadrilateral and 
pentagonal elements may coexist. Since the geometric 
possibilities are close to unlimited a systematic approach is 
necessary. Structured programming, CAD algorithms and 
approaches from constructive solid geometry are employed 
for the realization of this highly geometric task.  

1. INTRODUCTION 

Moving boundary problems of nature[1][2] and 
technology[3][4][5] is an attractive research area. Besides 
the trivial computational difficulties of interface movement, 
additional complexity is introduced due to surfaces that are 
irregular and not aligned with the orthogonal coordinate 
planes. Moreover in some problems multiple stationary and 
moving surface combinations can exist.  

 

 

 In moving boundary problems, in addition to the 
structured[6] and unstructured boundary confirming 
grids[7], embedded Chimera like moving zonal 
procedures[8] and level-set methods[9], Cartesian or cut-
cell techniques can be used to define the solution domain. 
Cartesian grid approach is an efficient, versatile and rapid 
geometry definition[10][11][12]. Grid types consist of 
irregular cut-cells and uniform rectangular volumes that are 
located near the boundaries and in the far field, 
respectively. As will be demonstrated Cartesian grid 
intersections depend on the local topological character of 
the boundary curves, therefore making the Cartesian 
approach problem independent and suitable for broad 
research interests.  

 

 

 

 

 

 

 

 

 
Unless a structured boundary layer grid (obtained by 
normal offsetting of the boundary) and optional tetrahedral 
transition elements are introduced, Cartesian grids may not 
be in the best possible quality for the given application but 
still can be preferred due to their high turnaround time and 
wide ranges of applicable geometry. For boundaries with 
many sharp corners it is another alternative to unstructured 
(tetrahedral) and multi block structured grids.  

 

 

 

 

 

Figure 1.  Solution algorithm and time loop. 



Fig. 1 shows the main components of a moving boundary 
CFD solver that employs Cartesian grids. Details of the 
grid generation routines will be described next, followed by 
selected applications. 

In a general problem there may be moving and solid 
boundaries connected in series, as shown in Fig. 2. These 
series of curves are termed as “streams.” In streams 
intersection points of moving and solid curves are labeled 
as “kink points”. A stream can be composed of a single 
moving or solid curve. Streams are allowed to loop, 
forming voids or closed bodies, with coinciding start and 
end points. 

2. DEFINITIONS 

The Cartesian grid terminology for stationary boundaries is 
quite complete in the literature[13][14]. In this section an 
extension will be made to cover domains that involve 
multiple stationary and moving boundaries.  

A boundary curve, passing through a template cell, 
intersects its sides in two points. Tracing the curve with the 
solid region being on the left-hand side, first intersection is 
denoted as “point 1a” and second as “point 2a.” Cell 
intersection points are stored with respect to coordinates 
relative to the cell.     

In Fig. 2, a rectangular “template” containing stationary 
(solid) and moving boundaries, having five and seven 
“square cells” along x- and y- directions is plotted. Given 
the length and width of the template, integer number of 
square grids can be generated inside. Template boundary 
sides are termed as EAST, WEST, SOUTH and NORTH, 
where inflow/outflow, reflective, transmissive, injecting, 
moving wall boundary conditions can be specified. Also for 
the side of any cell inside the template, a boundary 
condition can be assigned when needed for specific 
applications. 

If number of intersection points in a cell exceeds two, cell 
types that are not covered by the solvers’ cell-type-domain 
may appear. These cells need special treatment and named 
as “degenerate cells” in the Cartesian literature [13]. In that 
case, extra intersection points will be labeled and stored as 
“point 1b” and “point 2b,” to be used in degenerate cell 
handling routines, §3.7 A simple degenerate cell example is 
given in Fig. 2.   

In all problems, solid and moving walls are bordering the 
flow field of interest. “Curves” that form the boundaries of 
solid/moving walls are specified as line segments, in an 
order so that when the curve parameter increases, solid 
bodies are always on the left.  

3. CARTESIAN GRID GENERATION 
ROUTINES 

Cartesian Grid Solvers does not require a separate grid 
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Figure 2.  Terminology for cell intersections 



generator program, while for arbitrary moving complex 
geometries; generation of the template grids and finding 
local intersections is a complicated geometric task.  

Unlike boundary-conforming grids where global re-
meshing, at each time step, alters the positions of grid 
points, Cartesian grid points are stationary. Thus for 
Cartesian control volumes that are not cut by a moving 
boundary, a geometric conservation law or Jacobian 
transformations is not needed.  

3.1 Modeling Solid/Moving Wall Boundaries 
Curves that form the boundaries of solid or moving walls 
are approximated with line segments. A line segment is the 
lowest object of the stream structure. It is defined by the 
parametric equation of straight line. Parametric 
representation of line segments is found useful especially in 
finding cell intersections. For this type of representation 
position vectors of the start and end points of the straight 
line are needed. A single curve parameter defines the 
position of any point on the line segment. Segment center 
velocity and its magnitude are also stored to allow for 
variable offsetting along a moving curve types. 

The curve structure used in the code composed of the line 
segments, number of line segments that make up the curve 
and type of curve, which may be moving or solid. Line 
segment sequence of each solid/moving curve is arranged 
so that solid bodies are always on left. The geometric 
information of the input curves are kept in the following 
structure: 
struct curve { 
     struct line seg[N_SEGMT] ; 
              int type ;   /* SOLID or MOVE */ 
              int n_segmt ;      /* end indis of seg[] */ 
              }; 

3.2 Cell Size and Number of Cartesian Grid 
Lines 
Since the domain is rectangular and the cells are square, 
number of grid lines in x- and y- directions is dependent on 
each other. First the minimum number of grids in each 
direction is calculated, which is the coarsest possible grid 
for the given template dimensions. Then, if an extra 
refinement is required, number of grids is increased in both 
directions with the same ratio. If the template side 
dimensions are not whole numbers, then they should be 
expressed in rational form, i.e. numerator over 
denominator. In that case, to calculate cell size and 
template grid line locations accurately, integer arithmetic 
needs to be performed. 

3.3 Finding Streams 
A general geometry is composed of arbitrary number of 
solid and moving curves. At the start of the problem, i.e. at 
initial state, some part of the solid boundaries may be 
covered with moving curves and may not saw the flow 
region. For a regressing material this situation is sketched 
in Fig. 3. As the solution proceeds, these solid boundaries 
will expose out and start affecting the flow. To obtain the 

transient solution without any restart, at each time step the 
flow boundaries should be identified. Curves defining flow 
boundaries or wetted areas are called “streams” and the 
corresponding process is called “stream generation.”  
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Figure 3. A Solid Boundary Exposing out Which is 
Initially Covered with a Regressing Material. (A-B 
is the Stream at Time t. a-b.b-c.c-d.d-e is the 
Stream at a Later Time.) 

 

In Fig 3, initially there is one moving curve (A-B) and one 
solid curve (1-c.c-2). Solid curve is composed of two line 
segments and the initial stream is made up of the moving 
curve (A-B) only. As the boundary moves, at a later time 
step the number of moving curves increases to two. The 
stream is now made up of three curves  (a-b, b-c.c-d, d-e). 
In a general problem the number of streams may be more 
than one. Algorithms developed in this study allow 
multiple streams, cover situations involving merging and 
break-up of moving boundaries and can also generate loop 
streams. 

If there are no moving walls and all of the geometry that 
defines fluid boundaries is solid, then each solid wall is 
assigned as a new stream. If there are moving walls, new 
streams are generated by tracing moving and solid curves 
alternatively. In this trace, “A stream can form a closed 
loop or start and end at a template boundary” is the basic 
rule. Until this rule is satisfied, each trimmed/extended 
moving curve is traced first in its start direction and then 
towards its end. During these traces, intersections with 
other curves will be detected. Each new detected curve 
during this trace is kept in the order as a member of the 
generated stream. Boundaries that form loops can also be 
detected by this procedure.  

3.4 Cartesian Cell Intersections 
The basic geometry is illustrated in Fig 1. For each line 
segment, of each stream, intersections with vertical and 
horizontal grid lines are searched. If an intersection is 
found, intersection point and its type (moving or solid) are 
stored in the cell structure relative to cell coordinates. The 
coordinates should be specified relative to square cells 
because of the accuracy considerations. This algorithm is 
different than the one proposed in [1]. In that study 
boundary curves were traced and cell coordinates are 
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 defined as integer variables taking discrete values to 
overcome the accuracy problem. The intersection routine 
that is developed here considers the sense of each line 
segment and differentiates different cases. Including 
specific orientations of segments, like cases parallel to 
Cartesian grid lines. Two intersections are allowed and 
typical for each Cartesian cell. If more than two 
intersections are found, their positions are stored for 
degenerate cell considerations. 
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Figure 4.  Basic cell types (SOLID, FULFLOW, 
CUT-M/S, KINK) 

Figure 5.  Cell sides (E, W, S, N) and four corner 
vertices (V1, V2, V3, V4) are labeled, defining the 
possible locations of the intersection points. 

For geometries involving moving and solid boundaries, 
there are five basic cell types. These are: full flow, solid, 
cut-solid, cut-move and kink cells, Fig. 4. Cut cells contain 
a single curve segment, which may be moving or 
stationary. Kink cells are cut cells where a solid curve ends 
and a moving curve starts or vice versa. The same 
convention also holds for segments inside cells: the solid 
part is on left, in the direction of curve parameter increase. 

3.6 Cell Sub-Types 
The intersection type (cut segment crossing whether in or 
out of the Cartesian cell), and the cell side each intersection 
point is located determine the cell sub-type. As a solver 
convention, these sub-types are grouped and presented in 
Fig. 5. Depending on the conditions given in Fig 5, the 
solver differentiates 48 different cell sub-types.  Although 
only cut-moving/solid (CUT-M/S) cells are drawn, for each 
cut cell sub-type there is also a corresponding KINK cell 
with intersection points at the same locations. In that case 
the kink point, point-3 in Fig. 4, is located at an arbitrary 
position inside the Cartesian cell. 

3.5 Cell Structure 
In the solution domain each square formed by the grid lines 
defines a control volume, named as cell. Number of cells 
are equal to the number of grids. For each cell, besides flow 
variables the following information is also stored: 
 

• Basic cell type (Fig. 4) 3.7 Degenerate Cells 
• Cell sub-type (Fig. 5) In the solution domain, if arbitrary intersections with the 

input geometry are allowed, some cells that are not 
recognized by the Cartesian solver may appear. These cells 
are named as “degenerate cells” in the Cartesian literature. 
(A simple example is a cell with more than two 
intersections, Fig. 2)  

• Position vector of first and second intersection 
points. 

• Intersection types of first and second intersections. 
(Which depends whether the cell is intersected at that 
point by a solid or a moving curve.) 

• Position vector of first and second degenerate 
intersection points and their types.  PROBLEM TYPE NUMBER of UNIT 

GEOMETRIES 

P1 32 
P2 8 
P3 64 

P4diagonal 16 
P4 88 

• Position vector of the kink point. 

• List number that the cell is combined. 

• Cell area. 

• Position of cell center. 

Table 1. Number of possible unit geometries for 
each degenerate cell problem type. 

• The boundary condition specified for any of the cell 
sides. 

  

 



By increasing grid size or slightly shifting the input 
geometry some of the problematic cases can be overcomed. 
However such remedies work only for bodies that are not 
moving.  For applications involving continuously changing 
shapes and offsetting, these problematic geometries must 
be identified and suitably approximated.  

 

 

 
Depending on the number of intersections in the degenerate 
Cartesian cell, geometrically possible problem types can be 
grouped in to four. These problem topologies will be 
labeled as P1, P2, P3 and P4 cells (With one, two, three and 
four intersections in a Cartesian cell respectively.) For each 
problem type, the rotations and symmetries of the basic 
geometry should be considered, together with the type 
(moving or solid), of the intersecting boundary. The total 
number of unit operations that is taken into account for 
each problem type is given in Table 1. 
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Figure 8. P1 problem: P1 problem is possible if the 
segments that make a sharp corner are of the same type 
and one of the segments coincide with the template grid 
lines. There are two basic geometry types. (And each 
type has two variations, a and b) For the basic geometry 
type 1a (top left figure), the ambiguity in cell 
intersections is corrected by; Mark (cell c) and (cell s) as 
FULL FLOW. Move Point 1a of (cell se) to Point 2a of 
(cell e). Each of the four plotted topologies has also four 
different orientations depending on the position of the 
cell that is marked 1a/2a-only. 

 

 

 

 

 

 

 
To disclose the scope of the work some examples of the 
primary geometries and rules that are used in the code are 
given in the Figs. 6, 7 and 8. For degenerate cells with 
intersections of different curve types (solid/move), 
approximated geometry is sharp and defines a kink type of 
cell. Without considering these topologies a general 
moving body Cartesian solver is not possible. 

 

 
 
 
 
 
 
 
Figure 6. P2 and P4 type degenerate cells: In all figures 
dashed lines represent the final approximated boundary 
after degenerate cell corrections. Both line segments 
are of same type (Both MOVE and both SOLIDS). For the 
definitions of cell intersection points: 1a, 2a, 1b and 2b 
refer to Fig. 2. 

3.8 Marking Solid Cells 
Procedures describe in the previous sections specify the 
geometric properties for each cut cell in the solution 
domain. The remaining cells are either solid or full flow. 
For solid cells, no flow solution is needed. Therefore they 
must be distinguished from the fluid flow cells before 
starting the solution.  
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The procedure that is used is similar to the one used in  [1]. 
All the Cartesian cells are traced first horizontally and then 
vertically. During each trace, cell type does not changed 
until, a cut cell is reached, and at that cell, the marking type 
is reversed and switched to either FULFLOW or SOLID. 
The tracing proceeds with this marking type afterwards. By 
taking into account the detected cut cell sub-type, initial 
cell type assumption and previous type marks are corrected. 
The algorithm is tested in various geometries and found to 
be working flawlessly in all cases considered so far. 

The solid cell marking procedure of  [1] does not take the 
cut cell sub-type into account. For this reason an extra 
trace, either in horizontal or vertical direction is needed. 
Even with this extra trace, ambiguous geometries are still 
possible. In this study since in marking type switches, 

Figure 7. Diagonal P4 problem -one of the four sub-
types. The four cases that are shown on the left are 
same type of curve intersections. Different type 
intersections are plotted on right. 



For all the combined cells in the template, cell states are 
area-averaged, area and cell center of the combined cells 
are found. A different list number is assigned to each 
combination. 

depending on the cut cell sub-type initial cell type 
assumption is corrected and the number of horizontal and 
vertical traces are decreased to two. 

In Fig. 10, Cartesian grid Information for various template 
locations of the letters ‘S’ and ‘A’ are plotted. Close-up 
regions demonstrate some critical locations and treatment 
of degenerate cells. The numbers shown on Cartesian cell 
centers, represent the combination list that the cell belongs. 
F, C and S stand for FULLFLOW, CUT and SOLID 
respectively. Due to the boundary movement, cell 
information is regenerated at each time step.  

3.9 Cell Combinations 
Intersections of arbitrary line segments may produce tiny 
cells, which minimize the time step size. If a fast Cartesian 
solver is the aim, these tiny cells must be combined and 
treated as a single control volume. The segment mid-point 
normal rule [1] is practiced here. Which will be referred as 
the best combination.   
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Prior to the next time step, segment center points are 
displaced in the wall velocity direction, for cells that 
contain a moving type cut segment,. New curve points for 
the moving wall are generated without loosing the curve 
parameter sense. Curves that form loops are separately 
detected and displaced. Moving curve ends are trimmed or 
extended to a nearest solid wall or a template boundary. 

 

 
 

Figure 9.  Cell (i, j) is combined with the first of the two 
alternatives. 
Around confined regions and for cut cells with neighboring 
template boundaries, the best possible combination may not 
exist or the planned combination may produce an undesired 
size increase that decreases the local spatial accuracy. In 
order to acquire a consistent control volume size as much 
as possible, throughout the template, maximum three 
alternatives of the four neighboring cells are returned to the 
code in the order of the best combination possibility. In 
cases when the best combination cell does not exist other 
alternatives are considered in order, Fig. 9. 

At the end of the trimming and extending process, each 
moving curve should start from or end at a solid boundary 
/template side, or form a loop, so that the stream generation 
algorithms that are discussed in the previous sections can 
trace the moving and solid curves without any breaks. 
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     Figure 10. Cell type and combination information. Lower left corner of letter “S” and top right of letter “A”. 



4. MOVING WALL EXAMPLES As the result of detailed considerations of degenerate cells, 
some simple merging and break up situations can be 
detected, without any extra merge/break-up routines. 
Break-up region is realized by marking some degenerate 
cells as full flow. Fig. 12 demonstrates an offsetting 
sequence leading to break-up. Template is square of side 8 
mm. Offset velocity is 2.5mm/s and grid size is 46x46. 

Geometry handling and moving wall-offsetting functions 
will be demonstrated via three examples. Geometric 
problems encountered during normal offsetting involve 
edge separation and degenerative close loops. These are 
related to the local curvature and offsetting distance. For 
the following examples wall offset velocity is constant.  Wall offsetting accuracy can be assessed by comparing 

 flow area vs. perimeter plots. For an expanding and 
acting circular body, Fig 13, such plots are generated 
o grid sizes. A difference of ~10% is observed for the 

ted coarse grid, Fig 14. The circular body is initially 
sented by a 20-segment polygon and wall speed was 
ant. Increasing the grid size 1/3 resulted closer values. 
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        Figure 11. Offsetting in a Cartesian template. One of
g the four consecutive time steps are plotted 
Fig. 11 is a regressing diameter pipe with an arbitrary 
shape. This geometry is selected because of its high convex 
curvatures, which may cause problems in geometry 
dependent offsetting codes. 

 

 

 
Figure 13. Contracting circle in 100x100 grid. Wall Speed 
5 units/sec, Template size 4 units square, Time step 0.001 
sec. (Part of the mesh is shown) 

Break-up Region time = 0.147 s.

Break-up Region time = 0.1485 s.

Figure 12. Break-up of an arbitrary solid body. Demonstrating the degenerate cell handling procedures and stream formation. 
The initial geometry is drawn using thick lines. Not all the zones are plotted. During break-up, time step is modified 
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